
Tag-based module regulation for genetic programming
Alexander Lalejini
University of Michigan

Ann Arbor, Michigan, USA
lalejini@umich.edu

Matthew Andres Moreno
Michigan State University

East Lansing, Michigan, USA
mmore500@msu.edu

Charles Ofria
Michigan State University

East Lansing, Michigan, USA
ofria@msu.edu

ABSTRACT
This Hot-off-the-Press paper summarizes our recently published
work, “Tag-based regulation of modules in genetic programming
improves context-dependent problem solving,” published in Genetic
Programming and Evolvable Machines [1]. We introduce and ex-
perimentally demonstrate tag-based genetic regulation, a genetic
programming (GP) technique that allows programs to dynamically
adjust which code modules to express. Tags are evolvable labels
that provide a flexible naming scheme for referencing code modules.
Tag-based regulation extends tag-based naming schemes to allow
programs to “promote” and “repress” code modules to alter module
execution patterns. We find that tag-based regulation improves
problem-solving success on problems where programs must adjust
how they respond to current inputs based on prior inputs; indeed,
some of these problems could not be solved until regulation was
added. We also identify scenarios where the correct response to an
input does not change over time, rendering tag-based regulation
an unnecessary functionality that can sometimes impede evolution.
Broadly, tag-based regulation adds to our repertoire of techniques
for evolving more dynamic computer programs and can easily be
incorporated into existing tag-enabled GP systems.

CCS CONCEPTS
• Software and its engineering → Search-based software engi-
neering; • Computing methodologies → Artificial intelligence.

KEYWORDS
tag-based referencing, gene regulation, genetic programming, au-
tomatic program synthesis, SignalGP

ACM Reference Format:
Alexander Lalejini, Matthew Andres Moreno, and Charles Ofria. 2022. Tag-
based module regulation for genetic programming. In Genetic and Evo-
lutionary Computation Conference Companion (GECCO ’22 Companion),
July 9–13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3520304.3534060

1 INTRODUCTION
Genetic programming (GP) applies the principles of evolution to
automatically synthesize computer programs instead of writing
them by hand. Just as human programmers choose from many

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534060

different programming languages, each specialized for solving dif-
ferent kinds of problems, GP features many ways of representing
evolvable programs. Each representation varies in syntax, organiza-
tion, interpretation, and evolution. These differences influence the
types of programs that can be evolved, shaping a representation’s
problem-solving range.

Nearly all computer programs must conditionally respond to
inputs, and often, the appropriate response to a given input depends
on context (e.g., the prior sequence of inputs). Such functionality
requires that programs adjust associations between inputs and re-
sponses over time. For example, pressing the “equals” button on a
calculator triggers different computations depending the preceding
sequence of button presses. In [1], we introduce tag-based module
regulation for GP, which adds programmatic elements to GP repre-
sentations that allow us to more easily evolve programs capable of
dynamically regulating responses to inputs over time.

2 TAG-BASED MODULE REGULATION
Tag-based module regulation extends existing tag-based naming
schemes. Tags are evolvable labels that can be mutated, and the
similarity between any two tags can be quantified. Tags are most
commonly represented as numeric values [4] or as bit strings [2].
Like traditional naming schemes, tags can specify an arbitrarily
large address space. Unlike traditional naming schemes, tags allow
for inexact addressing. A referring tag refers to a tagged entity (e.g.,
modules [4] or memory registers [3]) with the closest matching tag,
ensuring all possible tags are valid references. Moreover, mutations
to tags need not change existing referential relationships. As such,
mutating tag-based names is not necessarily catastrophic to pro-
gram functionality (as it would be in traditional naming schemes).

Tag-based module regulation allows programs to “promote” or
“repress” code modules (Fig. 1). We describe our implementation of
tag-based regulation in the context of a module-based linear GP
system, SignalGP [2]), but our overall approach is applicable to tag-
enabled GP representations. Briefly, SignalGP programs comprise
tag-addressed modules (i.e., functions), each of which contains a se-
quence of instructions. Each instruction has arguments, including
an evolvable tag-based argument that can be used to call a tag-
addressed module. When an instruction attempts to call a module,
all modules in the program are ranked according to the tag-match
score between the instruction and module tags (based on tag simi-
larity), and the module with the best tag-match score is chosen.

To allow for tag-basedmodule regulation, we added a “regulatory
modifier” to all tag-addressed modules. This value adjusts how well
the module’s tag matches to referring tags, modifying the likelihood
it will be referenced. We additionally added a set of promoter and
repressor instructions that, when executed, adjust a target module’s
regulatory modifier: promoter instructions make a target module

25

https://doi.org/10.1145/3520304.3534060
https://doi.org/10.1145/3520304.3534060

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Lalejini, et al.

0 ⇒ 10 10 ⇒ 0

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.50

0.50

0.75

1111
tag reg.

(A) (B)

Module 3

Module 1

Module 2

1111
tag

0
reg.

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.50

0.25

0.75

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

1.29

0.75

0.25

1111
tag

10
reg.

(C)

Module 3

Module 1

Module 2

Repress 1110

...

0111
tag

0
reg.

Repeat {
 call 1001
}

0001
tag

0
reg.

Promote 1011

...

0.0

0.50

0.751111
tag reg.

(D)

Figure 1: Tag-based genetic regulation example (adapted from [1]). This example depicts a simple oscillating regulatory network instantiated
using tag-based regulation. In this example, tags are length-4 bit strings. The “raw” match score between two tags equals the number of
matching bits between them. Regulation (reg.) modifies match scores for “call” instructions according to Equ. 1 in [1]. First (A), the call 1001
in Module 1 executes, triggering Module 3. Next (B), Module 3 is executed, promoting Module 2. After Module 3 returns, the call 1001 in
Module 1 executes again (C); however, Module 2’s promotion causes it to be triggered instead of Module 3. Finally (D), Module 2 executes and
represses itself, resetting its regulatory modifier.

more likely to be referenced, and repressor instructions have the
opposite effect. See Section 3 of [1] for further details.

3 SUMMARY OF RESULTS
First, we assessed our implementation of tag-based module regu-
lation: Can we evolve programs capable of dynamically adjusting
their response to environmental conditions over time? And, can the
addition of tag-based module regulation improve problem-solving
success on context-dependent problems? We addressed these ques-
tions using the signal-counting and contextual-signal problems,
two diagnostic tasks that require context-dependent responses to
input signals. The signal-counting problem requires programs to
continuously change their response to an environmental signal,
producing a different designated output each time the signal is
repeated. The contextual-signal problem requires programs to re-
spond to a pair of input signals such that the first input signal
determines the correct output in response to the second signal.

For both the signal-counting and contextual-signal problems, we
observed the evolution of adaptive tag-based module regulation,
and we found that the addition of tag-based module regulation im-
proved problem-solving success (Table 4 and Fig. 5 in [1]). Moreover,
for some problem difficulty levels, solutions only evolved when
tag-based module regulation was enabled.

Next, we evaluated tag-based module regulation on the Boolean-
logic calculator problem, which requires that programs implement
a push-button calculator capable of performing 10 bitwise logic
operations (Table 3 in [1]). Tag-based module regulation improved
problem-solving success when performing the correct logic opera-
tion required programs to recall a previous input signal (Fig. 6 in [1]).
However, when we reduced the context dependence of outputs (i.e.,

inputs given in postfix notation), tag-based module regulation no
longer improved problem-solving success (Fig. 9 in [1]).

Finally, we used the independent-signal diagnostic task to demon-
strate a scenario where tag-based regulation is not useful. The
independent-signal problem requires programs to execute a unique
response for each of sixteen different input signals; because input
signals are unique, programs do not need to adjust their responses
to any particular signal over time. We found that erroneous regula-
tion hindered task generalization on this problem (Fig. 8 in [1]); that
is, programs might produce perfect output for one sequence of in-
puts, but for another input sequence, erroneous module regulation
caused programs to produce incorrect output.

Overall, our results demonstrate that tag-based module regula-
tion can improve GP systems’ capacity to evolve more dynamic
computer programs. Future work will apply tag-based module reg-
ulation in more contexts and investigate ways to scale up tag-based
regulation because we found that evolved regulatory networks
became increasingly brittle as they grew to large sizes.

REFERENCES
[1] Alexander Lalejini, Matthew Andres Moreno, and Charles Ofria. 2021. Tag-

based regulation of modules in genetic programming improves context-dependent
problem solving. Genetic Programming and Evolvable Machines (July 2021).
https://doi.org/10.1007/s10710-021-09406-8

[2] Alexander Lalejini and Charles Ofria. 2018. Evolving event-driven programs with
SignalGP. In Proceedings of the Genetic and Evolutionary Computation Conference
on - GECCO ’18. ACM Press, Kyoto, Japan, 1135–1142. https://doi.org/10.1145/
3205455.3205523

[3] Alexander Lalejini and Charles Ofria. 2019. Tag-accessed memory for genetic
programming. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion on - GECCO ’19. ACM Press, Prague, Czech Republic, 346–347.
https://doi.org/10.1145/3319619.3321892

[4] Lee Spector, BrianMartin, Kyle Harrington, and Thomas Helmuth. 2011. Tag-based
modules in genetic programming. In Proceedings of the 13th annual conference on
Genetic and evolutionary computation - GECCO ’11. ACM Press, Dublin, Ireland,
1419. https://doi.org/10.1145/2001576.2001767

26

https://doi.org/10.1007/s10710-021-09406-8
https://doi.org/10.1145/3205455.3205523
https://doi.org/10.1145/3205455.3205523
https://doi.org/10.1145/3319619.3321892
https://doi.org/10.1145/2001576.2001767

	Abstract
	1 Introduction
	2 Tag-based module regulation
	3 Summary of Results
	References

