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ABSTRACT
This Hot-off-the-Press paper summarizes our recently published
work, “Tag-based regulation of modules in genetic programming
improves context-dependent problem solving,” published in Genetic
Programming and Evolvable Machines [1]. We introduce and ex-
perimentally demonstrate tag-based genetic regulation, a genetic
programming (GP) technique that allows programs to dynamically
adjust which code modules to express. Tags are evolvable labels
that provide a flexible naming scheme for referencing code modules.
Tag-based regulation extends tag-based naming schemes to allow
programs to “promote” and “repress” code modules to alter module
execution patterns. We find that tag-based regulation improves
problem-solving success on problems where programs must adjust
how they respond to current inputs based on prior inputs; indeed,
some of these problems could not be solved until regulation was
added. We also identify scenarios where the correct response to an
input does not change over time, rendering tag-based regulation
an unnecessary functionality that can sometimes impede evolution.
Broadly, tag-based regulation adds to our repertoire of techniques
for evolving more dynamic computer programs and can easily be
incorporated into existing tag-enabled GP systems.
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1 INTRODUCTION
Genetic programming (GP) applies the principles of evolution to
automatically synthesize computer programs instead of writing
them by hand. Just as human programmers choose from many
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different programming languages, each specialized for solving dif-
ferent kinds of problems, GP features many ways of representing
evolvable programs. Each representation varies in syntax, organiza-
tion, interpretation, and evolution. These differences influence the
types of programs that can be evolved, shaping a representation’s
problem-solving range.

Nearly all computer programs must conditionally respond to
inputs, and often, the appropriate response to a given input depends
on context (e.g., the prior sequence of inputs). Such functionality
requires that programs adjust associations between inputs and re-
sponses over time. For example, pressing the “equals” button on a
calculator triggers different computations depending the preceding
sequence of button presses. In [1], we introduce tag-based module
regulation for GP, which adds programmatic elements to GP repre-
sentations that allow us to more easily evolve programs capable of
dynamically regulating responses to inputs over time.

2 TAG-BASED MODULE REGULATION
Tag-based module regulation extends existing tag-based naming
schemes. Tags are evolvable labels that can be mutated, and the
similarity between any two tags can be quantified. Tags are most
commonly represented as numeric values [4] or as bit strings [2].
Like traditional naming schemes, tags can specify an arbitrarily
large address space. Unlike traditional naming schemes, tags allow
for inexact addressing. A referring tag refers to a tagged entity (e.g.,
modules [4] or memory registers [3]) with the closest matching tag,
ensuring all possible tags are valid references. Moreover, mutations
to tags need not change existing referential relationships. As such,
mutating tag-based names is not necessarily catastrophic to pro-
gram functionality (as it would be in traditional naming schemes).

Tag-based module regulation allows programs to “promote” or
“repress” code modules (Fig. 1). We describe our implementation of
tag-based regulation in the context of a module-based linear GP
system, SignalGP [2]), but our overall approach is applicable to tag-
enabled GP representations. Briefly, SignalGP programs comprise
tag-addressed modules (i.e., functions), each of which contains a se-
quence of instructions. Each instruction has arguments, including
an evolvable tag-based argument that can be used to call a tag-
addressed module. When an instruction attempts to call a module,
all modules in the program are ranked according to the tag-match
score between the instruction and module tags (based on tag simi-
larity), and the module with the best tag-match score is chosen.

To allow for tag-basedmodule regulation, we added a “regulatory
modifier” to all tag-addressed modules. This value adjusts how well
the module’s tag matches to referring tags, modifying the likelihood
it will be referenced. We additionally added a set of promoter and
repressor instructions that, when executed, adjust a target module’s
regulatory modifier: promoter instructions make a target module
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Figure 1: Tag-based genetic regulation example (adapted from [1]). This example depicts a simple oscillating regulatory network instantiated
using tag-based regulation. In this example, tags are length-4 bit strings. The “raw” match score between two tags equals the number of
matching bits between them. Regulation (reg.) modifies match scores for “call” instructions according to Equ. 1 in [1]. First (A), the call 1001
in Module 1 executes, triggering Module 3. Next (B), Module 3 is executed, promoting Module 2. After Module 3 returns, the call 1001 in
Module 1 executes again (C); however, Module 2’s promotion causes it to be triggered instead of Module 3. Finally (D), Module 2 executes and
represses itself, resetting its regulatory modifier.

more likely to be referenced, and repressor instructions have the
opposite effect. See Section 3 of [1] for further details.

3 SUMMARY OF RESULTS
First, we assessed our implementation of tag-based module regu-
lation: Can we evolve programs capable of dynamically adjusting
their response to environmental conditions over time? And, can the
addition of tag-based module regulation improve problem-solving
success on context-dependent problems? We addressed these ques-
tions using the signal-counting and contextual-signal problems,
two diagnostic tasks that require context-dependent responses to
input signals. The signal-counting problem requires programs to
continuously change their response to an environmental signal,
producing a different designated output each time the signal is
repeated. The contextual-signal problem requires programs to re-
spond to a pair of input signals such that the first input signal
determines the correct output in response to the second signal.

For both the signal-counting and contextual-signal problems, we
observed the evolution of adaptive tag-based module regulation,
and we found that the addition of tag-based module regulation im-
proved problem-solving success (Table 4 and Fig. 5 in [1]). Moreover,
for some problem difficulty levels, solutions only evolved when
tag-based module regulation was enabled.

Next, we evaluated tag-based module regulation on the Boolean-
logic calculator problem, which requires that programs implement
a push-button calculator capable of performing 10 bitwise logic
operations (Table 3 in [1]). Tag-based module regulation improved
problem-solving success when performing the correct logic opera-
tion required programs to recall a previous input signal (Fig. 6 in [1]).
However, when we reduced the context dependence of outputs (i.e.,

inputs given in postfix notation), tag-based module regulation no
longer improved problem-solving success (Fig. 9 in [1]).

Finally, we used the independent-signal diagnostic task to demon-
strate a scenario where tag-based regulation is not useful. The
independent-signal problem requires programs to execute a unique
response for each of sixteen different input signals; because input
signals are unique, programs do not need to adjust their responses
to any particular signal over time. We found that erroneous regula-
tion hindered task generalization on this problem (Fig. 8 in [1]); that
is, programs might produce perfect output for one sequence of in-
puts, but for another input sequence, erroneous module regulation
caused programs to produce incorrect output.

Overall, our results demonstrate that tag-based module regula-
tion can improve GP systems’ capacity to evolve more dynamic
computer programs. Future work will apply tag-based module reg-
ulation in more contexts and investigate ways to scale up tag-based
regulation because we found that evolved regulatory networks
became increasingly brittle as they grew to large sizes.
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