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Abstract Fine-scale evolutionary dynamics can be challenging to
tease out when focused on the broad brush strokes of whole
populations over long time spans. We propose a suite of diagnostic
analysis techniques that operate on lineages and phylogenies in digital
evolution experiments, with the aim of improving our capacity to
quantitatively explore the nuances of evolutionary histories in
digital evolution experiments. We present three types of lineage
measurements: lineage length, mutation accumulation, and
phenotypic volatility. Additionally, we suggest the adoption of four
phylogeny measurements from biology: phylogenetic richness,
phylogenetic divergence, phylogenetic regularity, and depth of the
most-recent common ancestor. In addition to quantitative metrics,
we also discuss several existing data visualizations that are useful for
understanding lineages and phylogenies: state sequence visualizations,
fitness landscape overlays, phylogenetic trees, and Muller plots.
We examine the behavior of these metrics (with the aid of data
visualizations) in two well-studied computational contexts: (1) a set of
two-dimensional, real-valued optimization problems under a range of
mutation rates and selection strengths, and (2) a set of qualitatively
different environments in the Avida digital evolution platform. These
results confirm our intuition about how these metrics respond to
various evolutionary conditions and indicate their broad value.

1 Introduction

Evolution is a collective effect of many smaller events—such as replication, variation, and competition—
that occur on a fine-grained temporal scale. While evolutionʼs emergent nature can be fascinating, it also
presents challenges to studying the short-term mechanisms that, in aggregate, govern long-term results.
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In computational evolutionary systems, we can theoretically collect data to help untangle these mecha-
nisms. In practice, however, the sheer number of constituent events produces an overwhelming quantity
of data. In response, we have developed a standardized suite of diagnostic metrics to summarize short-
term evolutionary dynamics within a population by measuring lineages and phylogenies. Here, we de-
scribe these metrics and provide experimental results to develop an intuition for what they can tell us
about evolution.

A lineage describes a continuous line of descent, linking parents and offspring in an unbroken
chain from an original ancestor. A complete lineage can provide a post hoc, step-by-step guide to the
evolution of an extant organism where each step involves replication and inherited variation. Indeed,
lineage analyses are a powerful tool for disentangling evolutionary dynamics in both natural and digital
systems; digital systems, however, allow for perfect lineage tracking at a level of granularity that is
impossible in modern wet lab experiments. These data allow us to replay the tape of life in precise
detail and to tease apart the evolutionary recipe for any phenomenon we are interested in [29]. In one
notable example, Lenski et al. used the lineage of an evolved digital organism in Avida to tease
apart, step by step, how a complex feature (the capacity to perform the equals logical operation)
emerged [25].

Yet, tracking the full details of a single lineage, not to say a population of lineages, can be com-
putationally expensive and will inevitably generate an unwieldy amount of data that can be challeng-
ing to visualize or interpret [28]. Summary statistics can help alleviate these difficulties by enabling
the user to focus on aggregate trends across a population rather than needing to examine each in-
dividualʼs lineage. The question is how to effectively summarize a path through fitness space. One
useful abstraction is to treat the path as a sequence of states. Here, we primarily use phenotypes and
genotypes as the states in the sequence, but we could just as easily use some other descriptor of the
lineage at a given point in time. With this abstraction in hand, a few metrics are easily formalized: the
number of unique states, the number of transitions between states, and the amount of time spent in
each state. Additionally, we may care about how the transitions between states happened. What
mutations led to them? Were those mutations beneficial, deleterious, or neutral at the time? These
mutations are particularly notable because they did not simply appear briefly, but stood the test of
time, leaving descendants in the final population. Here, we explore a subset of these metrics that we
expect will be broadly useful.

Whereas a lineage recounts the evolutionary history of a single individual, a phylogeny details the
evolutionary history of an entire population. Measurements that summarize phylogenies can provide
useful insight into population-level evolutionary dynamics, such as diversification and coexistence
among different clades. A variety of useful phylogeny measurements have already been developed by
biologists [38]. These measurements tend to treat the phylogeny as a graph and make calculations
about its topology. Tucker et al. group them into three broad categories: assessments of the quantity
of evolutionary history represented by a population, assessments of the amount of divergence within
that evolutionary history, and assessments of the topological regularity of the phylogenetic tree. Such
measurements can help quantify the behavior of the population as a whole, providing insight into
interactions between its members. Thus, they are useful indicators of the presence of various types
of eco-evolutionary dynamics.

Here, we present three types of lineage measurements and suggest adopting four phylogeny mea-
surements from biology; these are lineage length, mutation accumulation, phenotypic volatility,
depth of the most-recent common ancestor, phylogenetic richness, phylogenetic divergence, and
phylogenetic regularity. For each metric, we discuss its application and our expectation for what
it can tell us about evolution. We evaluate our intuition in two computational contexts: first, on a
set of two-dimensional, real-valued optimization problems under a range of mutation rates and se-
lection strengths, and second, on four qualitatively different environments in the Avida digital evo-
lution platform (a minimal control environment, an environment that rewards evolving solutions for
nine Boolean logic functions, an environment with limited resources, and a simple changing envi-
ronment). For simplicity, we restrict our attention to asexually reproducing populations; however,
we suggest how these metrics can be extended to sexual populations.
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There are many visual analysis tools that operate on lineages and phylogenies. These data visu-
alizations can provide further insight into evolutionary dynamics within a run. In this article, we
discuss some approaches to visualizing lineages and phylogenies; we use these tools to build intuition
about the behavior of our metrics.

In addition to demonstrating a range of analysis tools that are useful to digital evolution research, we
intend for this work to begin a conversation within the artificial life community about how we quantify,
interpret, and compare observed evolutionary histories. There have been extensive efforts to improve
our ability to represent and visualize both lineages and phylogenies [6, 24, 28, 29, 37], which are indispensable
for building intuitions and qualitatively understanding the dynamics embedded in a populationʼs evolutionary
history. However, we are unaware of efforts to formalize a suite of quantitative lineage- and phylogeny-based
metrics for computational evolution. Lineage- and phylogeny-based analyses in artificial life are often a
component of a larger set of experiment-specific analyses or are limited to qualitative descriptions and/or
visualizations. Well-defined metrics not only provide valuable tools for teasing apart evolutionary dynamics,
they also allow us to move away from exclusively qualitative descriptions of results toward a deeper quan-
titative understanding. This understanding, in turn, facilitates rigorous statistical analyses and hypoth-
esis testing as well as comparison of evolutionary dynamics across different digital evolution systems.

2 Metrics

Code for all of our metrics is open source and available in the Empirical library [33]. Empirical is a
C++ library built to facilitate writing efficient and easily sharable scientific software. Empirical is a
header-only library, so adding these metrics to an existing project has minimal overhead. Stand-
alone versions of these metrics that can be applied to any previously generated data are being
developed as part of the Artificial Life Data Standards initiative [23].

2.1 Lineage Metrics
Each of the three lineage metrics that we discuss—lineage length, mutation accumulation, and phe-
notypic volatility—reduces a lineage to a linear sequence of states where each state represents an
individual or sequence of individuals that share a common genotypic or phenotypic characteristic of
interest; Figure 1 is given as a toy example to help guide our discussion of these metrics. While we
limit our focus to three lineage metrics, this abstraction places lineages in a form suitable for a wide
range of measurements, including the direct application of many data mining techniques designed to
operate over sequences, such as sequential pattern mining and trend analysis [19].

Only asexual lineages where genetic material is exclusively vertically transmitted can be directly
abstracted as a linear sequence of states. Sexual reproduction (or any form of horizontal gene transfer )
complicates matters significantly, as such lineages are more appropriately represented by trees rooted
at the extant organism, branching for each contributor of genetic material. For the metrics we pres-
ent here, we limit our discussion to asexual populations; however, we suggest three approaches for
generalizing these lineage metrics to sexual populations:

1. Build lineages based on sites in a genome. For genetic representations composed of multiple
constituent parts that are inherited atomically (such as, sites in a genome), the
complication of sexual lineages can be avoided by tracking the lineages of these parts.
Genomic sites will only ever have a single parent, so their lineages are effectively asexual.
An organism could then be viewed as a collection of lineages rather than a single one.

2. Apply a lossy compression to reduce sexual lineages into linear sequences. By modeling sexual
reproduction events as asexual reproduction events, it is possible to compress sexual
lineages into linear sequences of states. One parent is designated to be a part of the
lineage, and the genetic contributions of other parents are considered to be sources of
genetic variation (mutations). The primary downside to this approach is its lossiness (i.e.,
the fact that it discards potentially important parentage information).
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3. Extend our application of the metrics to operate over nonlinear (tree) structured lineages. Alternatively,
we can extend our metrics to operate over the more complex state sequences that
constitute the lineages of sexually reproducing organisms. One such approach would be to
consider all possible ancestor paths for an extant individual, calculate a given metric for
each of them, and then average the resulting values together.

Assessing the efficacy of these and potentially other approaches would be a useful line of research
to pursue in the future.

2.1.1 Lineage Length
Lineage length describes the number of states traversed by a lineage. If a state is defined as a single
individual, lineage length is a count of the number of generations. The generation count is most useful
in systems where generational turnover is not fixed, but instead determined by the life history strategies
of organisms. For lineages that span equal lengths of time, more generations imply faster replication rates
(e.g., r-selected lineage), while fewer generations imply slower replication rates (e.g., K-selected lineage).

Lineage length becomes a more flexible and informative metric if we consider more abstract
definitions of states along a lineage. We might measure lineage length where a state represents a
sequence of individuals that share a particular phenotypic or genotypic characteristic. In these cases,
lineage length only increases when the characteristic of interest changes from parent to offspring.
For example, in an environment where organisms must perform functions to be successful, we
might define a state as the set of functions performed by an individual. In this scenario, lineage
length would only increase when the set of functions performed by an ancestor changes; sequential
ancestors that perform the identical sets of functions would be compressed into a single state in the
sequence, even if other traits differ.

2.1.2 Mutation Accumulation
Mutation accumulation defines a set of measurements that track mutational changes across a lineage.
These changes can be measured as the magnitude of the change (for real-valued genomes) or as the

Figure 1. Four methods of representing a lineage. This example lineage has accumulated three mutations (one reverse
mutation and two substitutions) and gone through three distinct phenotypes. In (a), each state along the lineage repre-
sents a single individual; the lineage length is the number of generations spanned by the lineage (eight). In (b), states
represent the sequence of genotypes along the lineage, reducing the lineage length to four. In (c) states represent the
sequence of phenotypes along the lineage; the lineage length is the number of times a different phenotype is expressed
(three). In (d), states are a particular phenotypic characteristic; here, the lineage length is two.
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total count of changes (for discrete-valued genomes). Mutation effects can also be tracked to gain
insights about their distribution along a given lineage. Measures of mutation accumulation along the
lineages of successful individuals can help tease apart the importance of different types of mutational
events relative to what is expected by chance.

In conjunction with collected fitness information, the class of a mutation (beneficial, deleterious,
or neutral) can also be tracked. Different evolutionary conditions are expected to cause different
distributions of mutations along a lineage [3]; deviations revealed by measures of mutation accumu-
lation can act as a barometer for unexpected evolutionary dynamics. The number and magnitude of
deleterious mutations along a lineage can tell us both about the ruggedness of the fitness landscape
and about a lineageʼs ability to cross fitness valleys [9]. Similarly, an elevated measure of neutral
mutations relative to beneficial or deleterious mutations can suggest that the fitness landscape has
neutral space in which the lineage is spending most of its time drifting around.

2.1.3 Phenotypic Volatility
Phenotypic volatility addresses the rate at which a phenotype changes as you move down a lineage
(although the same concept can be applied to specific phenotypic traits or other types of state). In
systems with discrete/categorical phenotypes, this can be measured by counting the number of
times the phenotype changes. A related but subtly different measurement in such systems is the
number of unique phenotypes on a lineage. In most cases, these values will be similar; a discrepancy
would suggest that the lineage was cycling through a set of phenotypes. Such behavior could, for
example, be indicative of some form of evolutionary bet-hedging [4].

In systems with continuous-valued phenotypes, a subtly different approach is needed to measure
phenotypic volatility, because there are no discrete state transitions. Instead, we can measure the
overall variance in phenotype along a lineage. In some cases, it may be desirable to smooth out
the noise inherent in a real-valued phenotype. We can do so by instead taking the variance of the
moving average of fitness, to more closely approximate the idea of measuring phase transitions.

2.1.4 Summary Statistics
Each of these metrics can be calculated for each member of the population at each time step. Doing
so, however, would produce an amount of data so large that it would be difficult to make sense of.
Instead, we need to come up with ways to generate useful summaries. There are two main ap-
proaches to doing so: (1) choose a small number of representative lineages from a given time point,
or (2) collect summary statistics about the distribution of metric values across the population.

A single lineage can be chosen by selecting the lineage of a representative organism (either the
most fit or the most numerous). In populations where diverse strategies coexist, this approach can
be uninformative, as any one lineage is unlikely to be representative of all successful lineages. One
alternative is to filter out lineages that do not have offspring some predetermined number of gen-
erations later, as such lineages are likely not representative of an important subset of the population.
Still, any approach based on measuring only a subset of lineages can be challenging to interpret when
the current dominant lineage (or lineages) is replaced with a different one; such changes can intro-
duce a discontinuity if the value is being measured over time. If graceful responses to changes in
which lineage is dominant are required, it can be advantageous to instead measure summary statistics
(e.g., mean, variance, and range) across the entire population.

In scenarios with frequent selective sweeps, the dominant lineage will likely be similar to the average
lineage, as most of the population will be closely related. When the population contains more phylo-
genetic diversity, however, the dominant lineage may differ from the mean. Of course, the nature of
such differences is likely informative about the evolutionary dynamics occurring in the population.

2.2 Phylogeny Metrics
These metrics operate on entire phylogenies rather than single lineages within a population, elimi-
nating the need to identify a representative organism or lineage. Because they use data from the entire
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population, phylogeny metrics can be more computationally expensive to calculate than single lin-
eage metrics. On the other hand, because most lineages tend to share substantial history, phylogeny
metrics can usually be calculated more rapidly than full-population lineage metrics. Note that phy-
logenies can be constructed with regard to any taxonomic level of organization, be it individual,
genotype, phenotype, or other. Thus, when we refer generally to items in a phylogeny, we will
use the term taxa.

A standard technique for saving memory and time when working with phylogenies in computa-
tional systems is to prune them, removing dead (extinct) branches. Since all of the phylogeny metrics
we discuss here are borrowed from natural systems (where we do not have information about taxa
without offspring), they all are designed to work on pruned phylogenies. Thus, for the remainder of
this article, we will assume we are working with pruned phylogenies.

In populations without ecological forces promoting coexistence, phylogenies should coalesce pe-
riodically, resulting in pruned lineages that mostly consist of a single path. When there is strong
selection, this coalescence should happen even more rapidly. Thus, phylogenies with topologies that
deviate from that expectation are an indication of ecological interactions within the population. The
metrics discussed here can provide insight into the nature of those interactions and their long-term
evolutionary effects [13]. As a result, they are often referred to as phylogenetic diversity metrics [38].

An important distinction between phylogenies in natural versus computational systems is that
natural phylogenies are generally inferred from extant taxa, whereas computational phylogenies
are directly recorded. Inferred phylogenies do not contain internal nodes except at branch points.
They also do not contain history prior to the most recent common ancestor (MRCA) of all extant
organisms. For consistency, we exclude pre-MRCA taxa from our analyses. Here, we will not re-
move non-branching internal nodes, as these only serve to make our phylogenies more informative.

In some cases, however, it may be advantageous to remove non-branching internal nodes. Doing
so produces a more abstract summary of the phylogenetic process. Such summaries are useful in
cases where trees produced under different conditions (e.g., different numbers of generations) are
being compared.

Here we provide a high-level summary of phylogeny metrics that we expect will be particularly
useful. Figure 2 gives two example phylogenies on which we demonstrate several of the metrics
discussed in this subsection. For more metrics and more detail on all of these metrics, see [38, 43].

2.2.1 Depth of Most-Recent Common Ancestor
The depth of the MRCA (i.e., the number of steps it is from the original ancestor ) is an informative
metric and is easy to calculate. A recent MRCA implies frequent selective sweeps and less long-term

Figure 2. Both (a) and (b) show pruned phylogenetic trees on which we demonstrate several phylogenetic metrics.
Nodes in each tree represent taxa, and edges between nodes represent ancestor-descendant relationships. In each tree,
extant taxa (leaf nodes) are shaded red, the original ancestor (the root node) is shaded yellow, and the MRCA is outlined
in blue. We are assuming that all branches have a length of 1 (in some contexts, branch lengths may be varied to more
precisely reflect evolutionary distance between taxa). In (a), the phylogenetic richness (calculated as phylogenetic diver-
sity [15]) equals 4, the phylogenetic divergence (calculated as the mean pairwise distance among extant taxa) equals 2,
and the phylogenetic regularity (calculated as the variance of pairwise distances among extant taxa) equals 0. In (b), the
phylogenetic richness equals 6, the phylogenetic divergence equals 3.33, and the phylogenetic regularity equals 1.33.
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stable coexistence between clades. A downside to the depth of the MRCA as a metric is that any
population that does have a stable ecology will likely never change its MRCA after the very begin-
ning of evolution (although this property has the benefit of allowing us to detect stable coexistence
in the population). Measuring the frequency with which the MRCA depth changes (i.e., the number
of coalescence events) can also be informative, as some conditions can inflate the length of the lineage
relative to other conditions without actually increasing the frequency of selective sweeps. This sce-
nario is particularly likely when the population size is changing over time.

2.2.2 Phylogenetic Richness
Measurements of phylogenetic richness quantify the total amount of evolutionary history contained
in a set of taxa. The most traditional metric of phylogenetic richness is phylogenetic diversity, which is
calculated as the number of nodes in the minimum spanning tree from the MRCA to all extant taxa
[15]. Another approach is to calculate the pairwise distances between all taxa and sum them [38]. A
third approach is to sum evolutionary distinctiveness, a measure of a taxonʼs evolutionary unique-
ness [20], across all extant taxa [38].

2.2.3 Phylogenetic Divergence
Measurements of phylogenetic divergence quantify how distinct the taxa in the population are from
each other and are often averaged across individual taxa. For example, one option is to average the
pairwise distances across all taxa in the population [41]. Similarly, phylogenetic divergence can be
calculated by averaging the evolutionary distinctiveness across each taxon in the population.

2.2.4 Phylogenetic Regularity
Measurements of phylogenetic regularity quantify how balanced the branches are in a phylogeny and
are often the variances of values calculated for individual taxa [38]. Just as the mean of the pairwise
distances between all taxa in the population is a measure of phylogenetic divergence, their variance is
a measure of phylogenetic regularity. The same is true of the variance of evolutionary distinctiveness
across the population.

3 Visualizations

Data visualization is a critical component of data analysis. Summary measurements can be misleading
[2], but we often have too many data to digest from purely numerical values. Visualizations allow us
to structure our data in a way that is more intuitive to the viewer. Through this lens, we can confirm
that our intuitions about the drivers of a systemʼs behavior are correct. In this section, we will pres-
ent some visualization techniques that are useful for understanding lineages and phylogenies. These
visualizations have the power to substantially strengthen our intuitions about evolutionary systems.
Later, we will use these visualizations to ensure that our metrics are capturing the information that
we intend them to.

The idea that any lineage can be abstracted into a sequence of states (see Figure 1) is important
for visualization as well as quantitative measurements. We must be careful about choosing the right
level of abstraction; using too low a level can obscure broader patterns, whereas too high a level
loses the pattern entirely. Furthermore, generating some of these visualizations at all becomes in-
tractable with too little abstraction.

3.1 State Sequence Visualizations
A direct consequence of the fact that lineages are just sequences of states is the fact that we can
visualize these sequences [24]. Each sequence can be represented as a series of stacked rectangles.
The colors of these rectangles indicate which state they represent, and their heights represent how
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long the lineage stayed in that state (see Figure 3). Placed side by side, these sequences provide an ag-
gregate visual representation of the behavior of lineages from a given run or experiment.

3.2 Fitness Landscape Overlays
In order to understand how a particular evolutionary algorithm performs on a given problem, we can
observe how that algorithm moves a population across the problemʼs fitness landscape [21]. A fit-
ness landscape can be thought of as a map from solution representations into the quality of that
solution (its fitness) [44]. Traditionally, fitness landscapes have most commonly been visualized as
three-dimensional surface plots illustrating the effects of two continuously varying traits on fitness
(e.g., [26], or Figure 7 of this article). One of these traits is the x-axis, one is the y-axis, and the fitness
conferred by that combination of values is the z-axis. Although we will focus here on fitness land-
scapes that can be fully depicted in three dimensions, it is important to recognize that most real-
world fitness landscapes have far more dimensions. Various dimensionality-reduction techniques can
be applied to reduce them to three dimensions, but doing so may be misleading [16].

We can visualize the path that each lineage takes through the fitness landscape, mapping the x, y,
and z (fitness) coordinates of each ancestor of each member of the population [40]. In some cases, it
may also be helpful to overlay lineages on top of other spaces [10, 30]. Creating such a visualization
entails condensing a large quantity of information into a limited space. When projected onto two
dimensions, lineages can obscure and be obscured by parts of the fitness landscape (and each other ).

Fortunately, we are entering an era where we no longer need to squeeze this information into two
dimensions, confined to a computer screen or piece of paper. Over the past few years, virtual reality
technology has advanced to the point where it is a viable tool for data visualization [35, 39]. To this
end, we used the A-Frame framework [1] to build a three-dimensional data visualization that can be
viewed in virtual reality (see Figure 8) [11].

A-Frame supports building 3D scenes and rendering them to a variety of platforms. In the simplest
case, the visualization is rendered in WebGL, allowing it to be viewed in a standard web browser.
Mouse interactions such as rotation make it possible to view the visualization from all angles, and
WebGLʼs use of the graphics card allows it to render data-rich visualizations. A-Frame also supports
rendering the page with WebVR, allowing it to be viewed using various virtual reality headsets. These
platforms allow the user to explore the data in three dimensions. For the data interpretation in this

Figure 3. Schematic representation of state sequence visualization. Colors indicate different states. The optional legend
along the side can be used to indicate any information relevant to understanding the drivers of the state changes.
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article, we used an Oculus Rift to provide us with fine-grained control of which part of the visuali-
zation we were looking at.

Scenes in A-Frame are built by layering components on top of each other. The base component
of our visualization is a three-dimensional surface plot of the fitness landscape. On top of this layer,
we overlay a three-dimensional path from an individual that existed at the end of an evolutionary run
all the way back to its earliest ancestor, passing through the locations of all intermediate ancestors
along the way. A path can be added for each extant member of a final population to produce an
entire overlaid phylogeny.

To make visualizations more interpretable, we introduced a color gradient along the lineage; in
the visualization presented here, we use a grayscale lineage drawn onto a colorful landscape (see
Figure 4). Our lineages transition from white to black as evolutionary time progresses, indicating
when each portion of the lineage existed.

Our full visualization, complete with data, can be viewed on the web or using a virtual reality
headset at https://emilydolson.github.io/fitness_landscape_visualizations.

3.3 Phylogenetic Trees
Phylogenetic trees are a time-honored data visualization in biology. They depict the parent-child
relationships of taxa over the course of evolution (see Figure 5(a)). As with phylogeny metrics, mem-
ory usage is a primary concern in constructing these visualizations, as phylogenies can be very large.
Applying pruning and choosing more abstract taxonomic units (as discussed in Section 2.2) are the
best ways to mitigate this problem.

While simply drawing the phylogenetic tree is valuable in its own right, a lot of additional information
can be added to these visualizations. Nodes in the tree can be colored based on features of the corre-
sponding taxon, such as phenotype or fitness. Edges can be colored based on information about the
transition between taxa, such as the types of mutations that occurred or the direction of fitness change.
Note, though, that in large trees coloring nodes and edges the same way often makes patterns easier to see.

Another way to convey additional information is in the placement of nodes. In biology, the length
of the edge between nodes is generally used to indicate the amount of time that elapsed between the
origins of taxa. This convention also results in contemporaneous nodes being placed at the same
level of the tree; in essence, the tree has a time axis running from top to bottom. In artificial life
systems, we can take this idea a step further. Since we know the complete time span that a taxon
existed for, we can depict it on the phylogenetic tree by plotting rectangles in place of circular nodes
(see Figure 5(b)). The tops and bottoms of these rectangles correspond to the birth and death times
of the taxon along the time axis. While this approach runs the risk of producing an overly compli-
cated plot, the boxes can yield wildly different intuitions than circles would.

Figure 4. A lineage drawn on top of a fitness landscape.
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3.4 Muller Plots
Muller plots show the abundance and ancestry of taxa in a population over time [27, 31]. The per-
centage of a population occupied by each taxon at a given time point is depicted via a stacked-area
plot—the vertical space of the plot is occupied by a stack of colored polygons, each with height
proportional to the relative abundance of a corresponding taxon (see Figure 6). These polygons
are connected over time (as in a streamgraph), showing the changes in each taxonʼs abundance.

Figure 5. The same phylogeny depicted in two different ways. (a) A standard phylogeny, where nodes represent taxa and
edges indicate parent-child relationships. In this phylogeny, node position along the time axis represents time of birth.
Nodes are colored to distinguish taxa that are extant in the present (blue) from extinct taxa (black). Note that, because
this is a pruned phylogeny, all leaf nodes are currently extant. Edges can be colored to convey whatever information is
most useful. (b) The same phylogenetic tree, but with boxes indicating taxon life spans in place of circular nodes.

Figure 6. A Muller plot depicting the same phylogeny as the visualizations in Figure 5. The red region represents the root
node. As it gradually goes extinct, the proportion of the figure it takes up gradually diminishes. Its three offspring are
shown in purple, green, and blue.
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Additionally, each taxonʼs polygon is depicted as emanating from its ancestorʼs polygon. Muller plots
in this article were made using the ggmuller package [32] for the R statistical computing language
[36].

When should you use a Muller plot versus a phylogenetic tree? In general, Muller plots are more
useful when you care about the population dynamics of a relatively small number of fairly abstract
taxonomic units. Phylogenetic trees can accommodate a larger number of less abstract taxonomic
units and allow for greater flexibility in depicting evolutionary patterns.

4 Example Study Systems

We applied the metrics defined above to four benchmark functions from the GECCO competition
on niching methods [26] and to four qualitatively different environments in the Avida digital evo-
lution platform. Both of these evolutionary contexts are well understood and studied, making them
particularly well suited for building our intuitions about what our proposed suite of ancestry-based
metrics can tell us about evolutionary dynamics.

4.1 Niching Competition Benchmark Problems
To gain a broad understanding of our metrics, we applied them to a diverse subset of benchmark
problems from the GECCO competition on niching methods: Himmelblau, Shubert, Composition
Function 2, and Six-Humped Camel Back [26]. For each test problem, the x and y coordinates of-
fered by a given organism are translated by the function into a fitness value. Because of their low
dimensionality, we can fully visualize each problemʼs actual fitness landscape, allowing us to directly
view how our ancestry-based metrics respond to the actual paths evolved lineages take through the
fitness landscape under different conditions. We used the implementations of these problems at
https://github.com/mikeagn/CEC2013 (C++ for fitness calculations during evolution, Python
for post hoc analysis). Figure 7 shows the fitness landscapes defined by each of our four chosen
test problems.

For each test problem, we evolved populations of 1000 organisms under a range of mutation
rates and selection strengths for 5000 generations. Each organismʼs genome consisted of two
floating-point numbers that defined its position in the fitness landscape. We initialized populations
by randomly generating a number of organisms equal to the population size. To determine which
organisms reproduced each generation, we used tournament selection. We evolved populations un-
der five different tournament sizes: one, two, four, eight, and sixteen. Tournament size represents
strength of selection: higher tournament sizes correspond to strong selection and lower tournament
sizes correspond to weak selection [5]. A tournament size of one is equivalent to no selection pres-
sure (i.e., every organism in the population has an equal chance of being selected to reproduce).
Organisms selected to reproduce did so asexually. Values in an offspringʼs genome were mutated
by adding noise given by a normal distribution with a mean of 0; the mutation rate of a treatment
determined the standard deviation used to define this normal distribution and was given as a pro-
portion of the test problemʼs domain. We prevented mutations from causing a value to exceed the
valid domain of the given problem. For each problem and tournament size, we evolved populations
at eight mutation rates: 1e−08, 1e−07, 1e−06, 1e−05, 1e−04, 1e−03, 1e−02, and 1e−01.

We also ran a second set of experiments using these benchmark problems to explore the influ-
ence of ecological dynamics on our suite of ancestry-based metrics. For these experiments, we gen-
erated a stable ecology using the Eco-EA algorithm as a selection technique [17]. Eco-EA is a
technique for creating niches that promote stable diversification in the context of an evolutionary
algorithm. In our test problems, we created niches associated with spatial locations across the fitness
landscape. For all experimental conditions, we ran ten replicates, each with a unique random number
seed. Our experiment is implemented using the Empirical library; our implementation is included in
the supplemental material for this article [22].
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4.2 Avida
The Avida digital evolution platform [34] is a well-established artificial life system that has been used
to study a wide range of evolutionary dynamics [12, 18, 25, 45]. Avidaʼs track record and popularity
make it a good next step in testing our intuitions for how our suite of lineage and phylogeny metrics
will respond under a range of evolutionary dynamics.

In Avida, populations of self-replicating digital organisms compete for space in a finite, toroidal grid.
Each digital organism has a set of virtual hardware and a circular genome composed of assembly-
language-like instructions. An organismʼs virtual hardware contains components such as a central
processing unit (CPU) for executing instructions, registers used for computation, memory stacks,
and input and output buffers. The instruction set of Avida is Turing-complete and enables organ-
isms to perform basic computations, control their own execution flow, and replicate. Further, the
Avida instruction set is syntactically robust—all possible genetic sequences are syntactically valid,
even if they do not perform a meaningful computation.

Organisms in Avida replicate asexually by copying themselves instruction by instruction and di-
viding; the copy and divide operations, however, are not perfect and can result in mutated offspring.
When an organism successfully replicates, the resulting offspring is placed randomly in the world,
replacing that locationʼs former occupant. Thus, there is selection pressure for organisms to replicate
quickly before being copied over by others.

A digital organismʼs replication speed can be improved by reducing the number of instruction
executions required for an organism to copy itself (e.g., by optimizing the self-copy genetic machin-
ery) or by increasing its metabolic rate. The metabolic rate determines the speed at which an organ-
ism executes instructions in its genome; a higher metabolic rate allows an organism to execute its
genome faster, which, in turn, allows the organism to copy itself faster. Initially, an organismʼs met-
abolic rate is approximately proportional to its genome length; however, organisms can influence
their metabolic rate by performing particular functions, such as mathematical computations. In this
way, we can differentially reward or punish the performance of different functions.

Figure 7. The fitness landscapes used in this experiment: (a) Himmelblau, (b) Six-Humped Camel Back, (c) Shubert, and (d)
Composition Function 2. Interactive versions available at https://emilydolson.github.io/fitness_landscape_visualizations.
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We evolved thirty replicate populations of size 500 for 200,000 generations in four different en-
vironments: a minimal environment, the logic-9 environment, a limited-resource environment, and a
simple changing environment. Across all environments, instruction-copy operations erred at a rate of
0.0075, resulting in substitution mutations. Divide operations could result in single-instruction in-
sertions and deletions at a per-divide rate of 0.05.

In the minimal environment, we did not reward any functions. Because these digital organisms can-
not influence their execution speed by performing functions, selection pressure is entirely focused
on optimizing the efficiency at which organisms can self-replicate. Thus, we expected lineages with
short generation times to be most successful, resulting in long lineages comprising many individuals.
This minimal environment has only a single niche, so we expected to see low phylogenetic diversity
and frequent population-wide selective sweeps, each leading to a change in most recent common
ancestor (MRCA).

In the logic-9 environment, we rewarded the performance of all nontrivial one- and two-input Boolean
logic functions: NAND, NOT, OR-NOT, AND, OR, AND-NOT, NOR, XOR, and EQUALS (for more information
on these logic functions in Avida see [25]). In addition to selection pressure for efficient self-
replication, there is selection pressure for organisms to improve their instruction execution speed
by performing logic functions. Logic-9, like the minimal environment, is a single-niche environment,
so we expected to see low phylogenetic diversity and frequent selective sweeps. However, because
this environment rewards performing functions, we expected to see lineages with longer generation
times than those in the minimal environment. In addition to looking at individuals along a lineage, we
compressed lineages into sequences of phenotypic function profiles. The nine rewarded Boolean
logic functions are of different computational complexities, NAND and NOT being the simplest, and
EQUALS being the most complex. Further, in the logic-9 environment, simpler functions are building
blocks for the more complex functions. Thus, we expected to see functions appear on lineages in
roughly the order of function complexity. We can also use lineages compressed into sequences of
function profiles to measure the rate of function acquisition (phenotypic volatility) or to look for
trends in how long lineages spend in a particular phenotypic state, which can help untangle which
phenotypic transitions might be the most challenging.

Like the logic-9 environment, the limited-resource environment rewards the performance of all non-
trivial one- and two-input Boolean logic functions; each of these computational functions, however,
is associated with a limited pool of resources. When an organism performs one of the nine logic
functions, it consumes resources associated with that particular function (lowering its concentration)
in proportion to the resourceʼs availability. Rather than adjusting organismsʼ execution speeds based
directly on function performance, in the limited-resource environment an organismʼs execution
speed is adjusted as a function of the amount of resources it has collected. The limited-resource
environment has been shown to support stable ecologies via negative frequency-dependent selection
[8]. Here, we expected the phylogeny metrics to reveal high phylogenetic diversity relative to the
other three environments. Because previous work has shown that the limited-resource environment
supports the stable coexistence of multiple ecotypes, we expected infrequent changes in the MRCA.

In the changing environment, the rewarded functions cycled between two opposing states (at a rate of
200 updates1): ENV-NAND (where we rewarded NAND and punished NOT) and ENV-NOT (where we
rewarded NOT and punished NAND). ENV-NAND and ENV-NOT were configured so that no phenotype
can be optimal across both environment states. To achieve maximal fitness in either ENV-NAND or
ENV-NOT, organisms must perform only the focal function. In such environments, successful lineages
should move to occupy a region of genotype space such that it is easier to mutationally toggle between
a phenotype of only performing NAND and a phenotype of only performing NOT [7]. In this treatment,
we expected to see a high number of phenotype changes but a low total number of unique phenotypes
along evolved lineages. Further, we expected the rate of phenotypic change along successful lineages to

1 One update in Avida is defined as the amount of time it takes for the average organism to execute 30 instructions. See [34] for more
details.
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approach the rate of environmental change, as these lineages would have been more likely to produce
offspring well adapted to the next environment.

The specific configurations used in these experiments can be found in the supplemental material
for this article [22].

5 Data Analysis

We analyzed trends in our metrics using the R statistical computing language [36]. Specifically, we
used the ggplot2 package for all graphs included in this article [42]. All analysis scripts are available in
the supplemental material for this article [22].

6 Results and Discussion

6.1 Niching Competition Benchmark Problems
Overall, our results were consistent with evolutionary theory. As the mutation rate increases, coa-
lescence takes longer, as evidenced by the fact that the MRCA is farther back in time at higher

Figure 8. Values of example metrics across different mutation rates for each of the four problems. For these problems, all
lineage-based metrics are calculated on the lineage of the fittest organism at the final time point; population-level means
behaved similarly. All experiments shown here used a tournament size of 4. Circles are medians, vertical lines show
interquartile range, and the shaded area is a bootstrapped 95% confidence interval around the mean. Note that both axes
are on log scales.
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mutation rates (see Figure 8). Consequently, phylogenetic richness (as measured by phylogenetic diver-
sity) is higher at high mutation rates. Phylogenetic divergence, measured here as mean pairwise distance
between taxa, is similarly higher at high mutation rates. Evolutionary distinctiveness, being another mea-
sure of phylogenetic divergence, behaved almost identically [22]. The variance of evolutionary distinc-
tiveness and the pairwise distance between taxa (phylogenetic regularity metrics) behaved similarly to the
phylogenetic divergence metrics. This pattern makes sense, as most phylogenetic divergence on these
landscapes will produce unbalanced phylogenetic trees. If there were stable coexistence between
multiple clades, we would expect to see a reduced correlation between the phylogenetic divergence
metrics and the phylogenetic regularity metrics. Increased mutation rate also increases the number of
deleterious steps taken, a logical consequence of increasing mutation relative to strength of selection.
The relationship between phenotypic volatility and mutation rate appears to fluctuate. This phenom-
enon is worthy of further study, but appears to be related to the probability of mutations moving a
lineage between peaks of equal height. Completely unsurprisingly, mutation accumulation increases
linearly with mutation rate.

Similarly, increasing tournament size generally increases the rate of coalescence, as higher tour-
nament sizes correspond to stronger selection (see Figure 9). As a result, all of the measures of

Figure 9. Values of example metrics across different tournament sizes for each of the four problems. All experiments
shown here used a mutation rate of 0.001. For these problems, all lineage-based metrics are calculated on the lineage of
the fittest organism at the final time point; population-level means behaved similarly. Circles are medians, vertical lines
show interquartile range, and the shaded area is a bootstrapped 95% confidence interval around the mean. Note that
both axes are on log scales.
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Figure 10. A close-up on two adjacent peaks in the Shubert function fitness landscape. Lineages are depicted as paths
fading from white to black over evolutionary time. The lineages shown here evolved under a mutation rate of 0.01. (a)
was evolved using a tournament size of 2, whereas (b) was evolved using a tournament size of 16. These figures neatly
illustrate how increased tournament size keeps the lineage near the tops of the peaks.

Figure 11. Values of example metrics across different mutation rates for each of the four problems under a diversity-
preserving selection regime, Eco-EA. For these problems, all lineage-based metrics are calculated on the lineage of the
fittest organism at the final time point; population-level means behaved similarly. All experiments shown here used a
tournament size of 4. Circles are medians, vertical lines show interquartile range, and the shaded area is a bootstrapped
95% confidence interval around the mean. Note that both axes are on log scales.
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phylogenetic richness and divergence decrease as tournament size increases. MRCA depth, on the
other hand, increases, directly reflecting the increased frequency of selective sweeps.

Surprisingly, there is no clear effect of tournament size on the count of deleterious steps along
the dominant lineage (as evidenced by the fact that the confidence intervals all overlap). Values for
all selection schemes and tournament sizes hover near 2500, meaning that a deleterious step is taken
in roughly half of the 5000 generations. This result is partially an effect of mutation rate; at the
lowest mutation rate, there is a clear trend toward fewer deleterious steps as tournament sizes in-
crease [22]. However, the effect of the mutation rate on the relationship between tournament size
and dominant deleterious steps is complex, particularly for Composition Function 2 [22]. These
trends likely share a common cause with the thresholding effect evident in Figure 8, where the
number of deleterious steps along the dominant lineage abruptly climbs between mutation rates
of 10−7 and 10−5 and remains relatively flat over other mutation rates. Based on an inspection of
the 3D fitness landscape visualizations, we can see that this is not an effect of lineages moving from
peak to peak; at most mutation rates, they tend to remain on a single peak (with the exception of
adjacent peaks in the Shubert function; see Figure 10). Thus, we can infer that this effect is the result
of a driftlike phenomenon where, at sufficiently high mutation rates, all members of the population
are constantly somewhat displaced from their local fitness peak.

Having reinforced our intuition about these metrics in a simple system, we can now expand
them to a slightly more complex system. A large proportion of interesting short-term evolutionary
dynamics relate to interaction between individuals in the population (i.e., ecological dynamics). In
particular, such interactions often promote the stable coexistence of clades occupying different
niches. Thus, it is important to establish a baseline for how our metrics respond to ecological
coexistence.

Indeed, the presence of stabilizing ecological dynamics substantially changes the values we observe for
most metrics (see Figure 11). Perhaps the least surprising of these is that the MRCA depth is far lower
than it was for tournament selection, reflecting the rarity of coalescence events under these conditions.
Consequently, phylogenetic diversity is higher, as the extant population represents a greater amount of

Figure 12. A sampling of informative lineage metrics from Avida calculated after approximately 10,000 generations.
“Mean pairwise distance” is a measure of phylogenetic divergence; higher values imply greater phylogenetic diversity.
“MRCA generation” is the generation at which the current most recent common ancestor occurred (lower numbers
mean it was longer ago). For Avida, all lineage-based metrics are calculated on the lineage of the most numerous phe-
notype. “Unique phenotypes” is the count of unique phenotypes that occurred along the dominant lineage.
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evolutionary history. Relatedly, the mean pairwise distance among extant taxa is higher in the presence of
ecology, as clades in different niches continue to diverge. Interestingly, the relationship of many
metrics (e.g., deleterious steps and phylogenetic diversity) to the mutation rate is reversed in the pres-
ence of ecology. Explaining the underlying mechanisms behind these distinctions is beyond the scope
of this article, but the ease with which the metrics identified their presence clearly indicates their
power.

6.2 Avida
The data from Avida are also consistent with our expectations and additionally point towards some
interesting directions for future investigation. As predicted, the only environment that preserved
phylogenetic diversity was the limited-resource environment. Lacking diversity-preserving dy-
namics, the other environments all repeatedly lose phylogenetic diversity due to selective sweeps
(see Figure 12).

Looking at phenotypic volatility, we see that the changing environment condition has dramatically
higher volatility than the others. This result is precisely what we hypothesized, as the phenotype should
change approximately every time the environment does (see Figure 12). Indeed, from Figure 13, we

Figure 13. State sequence visualization of phenotypes along the dominant lineage in the changing environment condition.
The key along the left indicates the environmentʼs state over time. Each column is one replicate. From this visualization,
we can see that most successful lineages are able to adapt to a change in the environment relatively quickly. We can also
see that there is a fair amount of variation in the precise timings of these changes and whether they occur for every
change of the environment.
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can see that this predicted mechanism is accurate. The limited-resource environment has lower phe-
notypic volatility than the changing environment, but higher phenotypic volatility than the other two
environments. This observation is consistent with the fact that the limited-resource environment is
also a changing one; competitive pressures shift with the composition of the population. This inter-
pretation is corroborated by Muller plots from the limited-resource condition, which show frequent
shifts in the abundance of various phenotypes (see Figure 14). We can gain further insight by com-
paring phenotypic volatility to the count of unique phenotypes along a lineage. Despite its high phe-
notypic volatility, the changing environment condition produces lineages with relatively few unique
phenotypes. This finding makes sense, as the changing environment is only creating pressure to toggle
back and forth between two phenotypes. The limited-resource condition, however, has a high count of
unique states relative to its phenotypic volatility. From this comparison, we can conclude that the

Figure 15. Mutations along the dominant lineage across treatments in Avida, calculated after approximately 10,000 gen-
erations. The upper left shows the total count of mutations of all types. The other plots show the quantity of each
mutation type as a proportion of the total.

Figure 14. Muller plot from a representative run of Avida in the limited-resource environment. This plot shows the
population dynamics of different phenotypes over 8,000,000 updates (a unit of time in Avida that is proportional to
the number of CPU cycles used thus far ). Only phenotypes that make up at least 5% of the population at at least
one time point are shown. Note the region in the middle of the plot where we can see repeated selective sweeps that
are contained to a single niche.
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competition in this environment is creating pressure for the population to explore new phenotypic
states, rather than simply cycling among a fixed set.

From the mutation accumulation data, we can begin to glean information about the precise
dynamics of adaptation (see Figure 15). Across the board, the limited-resource environment has
more mutations than any other condition, which is consistent with the greater number of unique
phenotypes explored. The changing environment has the second greatest mutation accumulation,
presumably due to the mutations that are required to change phenotype as the environment changes.
A relatively high percentage of the mutations that accumulated were substitutions. Determining
whether this is the result of chance or an indication that substitutions are particularly valuable will
require further study.

7 Conclusions

We have demonstrated that these analysis techniques conform to our intuitions in well-understood
systems. In more complex environments, they provide a quick way to identify interesting behavior to
study further. We believe they are now ready to be adopted more broadly.

Our goals for this work are twofold: (1) to suggest a set of analyses that will improve our capacity
to quantitatively understand evolutionary histories in digital evolution experiments, and (2) to spark a
conversation in the computational evolution community about how to quantify, interpret, and com-
pare observed evolutionary histories. With feedback from the community, we will expand our suite
of lineage and phylogeny metrics, compiling accessible descriptions and examples of each metric.

More generally, we suggest that artificial life researchers should keep phylogeny- and lineage-
based analyses in mind when trying to answer specialized questions as well. Recently, we proposed
a suite of metrics for studying open-ended evolution that leverage the power of perfect phylogenetic
information to screen systems for interesting evolutionary dynamics [14]. By comparing observed
phylogenies with those that we would expect under certain theoretical assumptions, we can screen
for specific behavior. This general approach should be adaptable to a variety of dynamics of interest.
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