Evolving Reactive Agents with SignalGP

Alexander Lalejini and Charles Ofria

Department of Computer Science and BEACON Center for the Study of Evolution in Action,
Michigan State University, East Lansing, MI, USA
lalejini @msu.edu

Introduction

We introduce SignalGP, a technique for creating digital
organisms that harnesses the event-driven programming
paradigm. These organisms can evolve to automatically re-
act to signals from the environment or from other agents
in a biologically-inspired manner. In addition to introduc-
ing SignalGP, we summarize previous results demonstrat-
ing the value of the event-driven paradigm in environments
dominated by agent-agent and agent-environment interac-
tion. Our full introduction to SignalGP can be found in
(Lalejini and Ofria, 2018).

Digital evolution has its roots in Genetic Programming
(GP), wherein computer programs are evolved using natural
principles. For example, Avida (Ofria et al., 2009) is a pop-
ular digital evolution system that uses self-replicating linear
genetic programs as its organisms. The organisms generally
follow an imperative programming paradigm where compu-
tation is driven procedurally. Program execution starts at the
top of the program and proceeds in sequence, instruction-
by-instruction, jumping or branching as dictated by executed
instructions (McDermott and O’Reilly, 2015).

In contrast to imperative programming, program execu-
tion in event-driven computing is directed primarily by sig-
nals (events), simplifying the development of programs that
dynamically react to events around them. This biologically-
realistic mode of execution is often employed when de-
veloping software for agents that must frequently interact
with each other or the environment (such as robotics or dis-
tributed systems). By capturing the event-driven paradigm,
SignalGP aims to improve our capacity to evolve computer
programs that operate in interaction-heavy environments,
expanding our ability to generate complex agent-agent and
agent-environment interactions.

SignalGP

In SignalGP, signals direct computation by triggering the ex-
ecution of program modules (functions). Here, we present
SignalGP in the context of linear GP, wherein programs are
represented as linear sequences of instructions; however, the
ideas underpinning SignalGP generalize across a variety of

digital evolution systems.

SignalGP agents (programs) are defined by a set of func-
tions. Each function contains a linear sequence of instruc-
tions and is referred to using a tag. SignalGP events contain
a tag and event-specific data. Agents react to events by run-
ning matched functions that specify how that event should
be handled. SignalGP augments tag-based referencing tech-
niques demonstrated by Spector et al. (Spector et al., 2011)
to determine which function is triggered by an event. Here,
tags are arbitrarily represented as fixed-length bit strings. An
event triggers the function with the most similar tag where
tag similarity is the proportion of matching bits between the
two bit strings. Agents may generate internal events and are
subject to events generated by the environment or by other
agents. When an event triggers a function, the function is
run with the event’s associated data as input, allowing agents
to react on-the-fly to signals; SignalGP agents can react to
many events simultaneously by processing them in paral-
lel. Each SignalGP program instruction has a tag argument
(which it may or may not use), providing an evolvable mech-
anism for instructions to reference internal functions or to
generate events. Mutations in Signal GP can alter tags or in-
struction content within functions, as well as duplicating or
deleting whole functions. As function tags and instructions
evolve, their relationship with events and each other can be
refined over time. Figure 1 gives a high-level overview of
SignalGP. For a full description of our implementation of
SignalGP, see (Lalejini and Ofria, 2018).

Experimental Results

In (Lalejini and Ofria, 2018), we demonstrated the value
of incorporating the event-driven programming paradigm in
GP using two distinct test problems: a changing environ-
ment problem and a distributed leader-election problem. In
both problems, a program’s capacity to react efficiently to
external events is crucial. Here, we briefly report a subset of
our results for the changing environment problem.

In the changing environment problem, the environment
can be in one of K states. To maximize fitness, agents must
match their internal state to the current state of the environ-

Events have two components:

Functions have two components:

o ta L
1) a tag (bit string) [tag] 1) a tag (bit string)
[tag] — [instruction] N
2) data [cate) Signal 0100 2) a linear sequence of instructions
o) N [instruction] = = o
Where do events come from? ,9, s[slE 2\%\% \\j
o 5’ S §-=) 2 <, % v Broadcast 0111
Signals generated by other agents. < £ 5 SignalGP 2\2\>
= Program -
Signals in the environment. 0011
/(lo/lo \\6&\
H @) N
Self-generated signals. /000%/% SN 5% @0\\&0\\'
) < @o‘ o
0NN, &40
Environment 7 VLR
% .\9

Figure 1: A high-level overview of Signal GP. SignalGP programs are defined by a set of functions. Events trigger functions with the closest
matching tag. SignalGP agents can respond to many events simultaneously by processing them in parallel.

ment. We evolved SignalGP agents under three treatments,
each with different mechanisms to sense the environment:
(1) an event-driven treatment where environmental change
events produced signals that can trigger functions; (2) an
imperative control treatment where programs had to actively
poll the environment to determine its state; and (3) a com-
bined treatment where agents had either option available. In
the imperative and combined treatments, we included new
instructions that allowed programs to test the current envi-
ronmental state. Here, we show the results for environment
sizes two and eight (K = 2 and 8) in Figure 2. We com-
pared treatments using a Kruskal-Wallis test, and if signif-
icant (p < 0.05), we performed a post-hoc Dunn’s test, ap-
plying a Bonferroni correction for multiple comparisons.

Agents evolved with fully event-driven SignalGP signifi-
cantly outperformed those evolved in the imperative treat-
ment across both the two-state (combined: p = 1.21e-47,
event-driven: p = 1.21e-47) and eight-state environments
(combined: p = 1.29e-46; event-driven: p = 2.18e-45). In the
combined treatment, we further confirmed that evolution fa-
vored the event-driven strategy (Lalejini and Ofria, 2018).

Conclusion

While our recent work demonstrates SignalGP in the con-
text of linear GP, we have plans to extend SignalGP across
a variety of evolutionary computation systems. Here, func-
tions are exclusively represented as linear sequences of in-
structions; however, we can easily use any representation
capable of processing inputs (e.g. other forms of GP, neu-
ral networks, efc.). We could even employ multiple repre-
sentations within a single agent, providing evolution with a
diverse toolbox and allowing digital organisms to comprise
mosaics of representations.

(A) Two-state Environment (B) Eight-state Environment

so ==

0 Imperative Event-driven Combined Imperative Event-driven Combined

Figure 2: Changing environment problem results across the (A)
two-state environment and (B) eight-state environment. The box
plots indicate the fitnesses (each an average over 100 trials) of best
performing agents from each replicate.

Acknowledgements

We extend our thanks to Wolfgang Banzhaf and the mem-
bers of the Digital Evolution Laboratory at Michigan State
University for thoughtful discussions and feedback. This re-
search has been supported by the National Science Founda-
tion under Grants DGE-1424871 and DEB-1655715.

References

Lalejini, A. and Ofria, C. (2018). Evolving Event-driven Programs
with SignalGP. In Proceedings of the Genetic and Evolutionary
Computation Conference. ACM.

McDermott, J. and O’Reilly, U.-m. (2015). Genetic Programming.
In Kacprzyk, J. and Pedrycz, W., editors, Springer Handbook of
Computational Intelligence. Springer, Berlin, Heidelberg.

Ofria, C., Bryson, D. M., and Wilke, C. O. (2009). Avida: A soft-
ware platform for research in computational evolutionary biol-
ogy. In Artificial Life Models in Software. Springer London.

Spector, L., Martin, B., Harrington, K., and Helmuth, T. (2011).
Tag-based modules in genetic programming. Proceedings of the
Genetic and Evolutionary Computation Conference.

